6

[This question paper contains 8 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 986

G

Unique Paper Code

2352201102

Name of the Paper

: DSC: Elements of Discrete

Mathematics

Name of the Course

: B.A. (Prog.)

Semester

: I

Duration: 3 Hours

Maximum Marks: 90

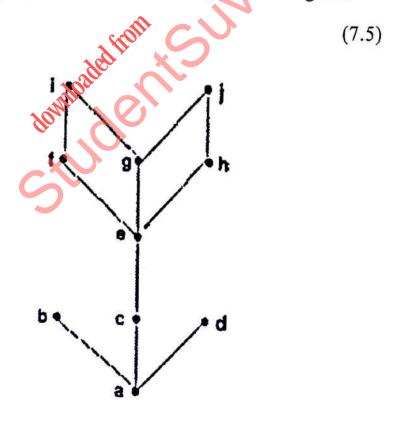
Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt any two parts from each question.
- 3. All questions are compulsory.
- 4. Marks are indicated.

P.T.O.

- 1. (a) Determine the following:
 - (i) Compute the truth table of the statement $(p \Rightarrow q) \equiv (\sim q \Rightarrow \sim p).$
 - (ii) If $p \Rightarrow q$ is false, then determine the truth value of $(\sim p)$ V $(p \Leftrightarrow q)$. Explain your answer. (7.5)
 - (b) Let $A = \mathbb{Z}$ (the set of integers). Define the following relation R on A:

a R b if and only if |a-b| = 2.

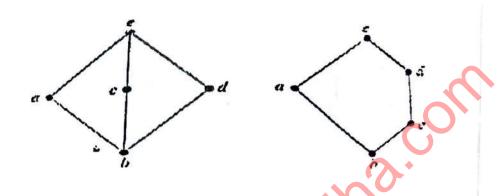

Determine whether the relation R on A is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive. Is R an equivalence relation on A?

(c) Prove by mathematical induction that if A_1, A_2, \dots, A_n are any n sets, then

 $\bigcap_{i=1}^{n} \overline{A_i} = \bigcup_{i=1}^{n} \overline{A_i} \quad \text{where} \quad \overline{A_i} \quad \text{denote the}$ complement of the set A_i . (7.5)

(a) Let X = {1, 2, 3}. Consider the partial ordered set (L, ≤) where L = P(X) is the power set of X and ≤ is defined as, U ≤ V if and only if U ≤ V ∀ U, V ∈ L. Also consider partial ordered set S of all positive divisors of 30, with respect to the order that for any 10 b ∈ S, a ≤' b if and only if a divides b. Exhibit an order isomorphism between (L, ≤) and (S, ≤'). Are the Hasse diagrams of two partial ordered sets (L, ≤) and (S, ≤') identical?

- (b) Let \mathbb{N}_0 be the set of whole numbers equipped with the partial order \leq of divisibility defined as $a \leq b$ if and only if a divides b. Draw a Hasse diagram for the subset $P = \{2,3,12,18\}$ of (\mathbb{N}_0, \leq) . How many maximal and minimal elements are there in (P, \leq) ? (7.5)
- (c) Find the lower and upper bounds along with greatest lower and least upper bound of the subsets {c, e}, {b, i) in the following Hasse diagram.


- 3. (a) Determine whether the relation (Z, ≤) on the set of all integers with the order "less than equal to" is a lattice.
 (7.5)
 - (b) Let (L, \land, \lor) be an algebraic lattice. Show that $m \le n \Rightarrow l \land m \le l \land n$ and $l \lor m \le l \lor n$, for any $l, m, n \in L$. (7.5)
 - (c) Define a sublattice of a lattice L. Show that the interval $[x, y] = \{l \in \mathbb{Z} : x \le l \le y\}$, is a sublattice for any two elements $x, y \in L$ with $x \le y$.

(7.5)

4. (a) Define a distributive lattice. Prove that a homeomorphic image of a distributive lattice is distributive. (7.5)

P.T.O.

(b) Does the following diamond and pentagonal lattices satisfy the distributive laws? (7.5)

(c) Define a complemented lattice. Also show that $(P(M), \cap, \cup)$ is a complemented lattice for the power set P(M) of a non-empty set M.

(7.5)

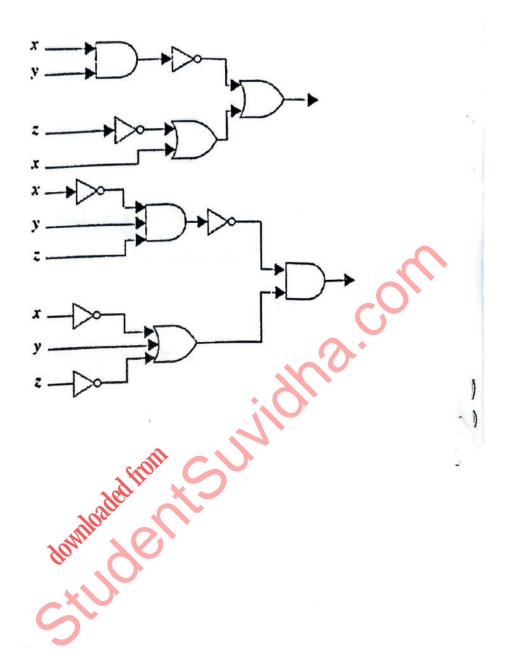
5. (a) What is Karnaugh map? Use Karnaugh map diagram to find a minimal form of the function $f(x,y,z,t) = x\overline{y} + xyz + \overline{x} \, \overline{y} \, \overline{z} + \overline{x} \, yz \, \overline{t} \, . \tag{7.5}$

(b) Find the DN form and CN form of the following
Boolean functions

$$f(x,y,z) = x\overline{y} + x(\overline{yz}) + xyz$$
 (7.5)

6. (a) Let $f(x,y,z) = xy\overline{z} + \overline{x}yz + \overline{x}y\overline{z}$. Find the implicants, prime implicants and essential prime implicants of f(x, y, z).

$$\overline{\left(x(\overline{y}\overline{z})\right)} = \overline{x} + (y+z)(\overline{y}+\overline{z}). \tag{7.5}$$


(b) Construct a logic circuit corresponding to Boolean function

(i)
$$f(x, y, z) = xyz' + yz' + x'y$$

(ii)
$$f(x, y, z, w) = (x + y)(x' + z) + (z + w)'$$
(7.5)

(c) Determine the output of each of these circuits (7.5)

P.T.O.

